Schedule of Accreditation
 issued by
 United Kingdom Accreditation Service

2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

	Precision Technologies International Ltd t/a Precision Technologies Issue No: 021 Issue date: 26 August 2021	
CALIBRATION 0325 Accredited to ISO/IEC 17025:2017	Mariner Lichfield Road Industrial Estate Tamworth Staffordshire B79 7UL	Contact: Mr L Hyland Tel: +44(0)1827 315050 Fax: +44 (0)1827 317921 E-Mail: enquiries@ptiltd.co.uk Website: http://precisiontechnologies.co.uk

Calibration and Measurement Capability (CMC)

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty ($k=2$)				Remarks
RANGE IN MILLIMETRES AND UNCERTAINTY IN MICROMETRES UNLESS OTHERWISE STATED						
GEARS SPUR/HELICAL EXTERNAL		$\begin{aligned} & 1.8 \\ & 3.8 \\ & 5.8 \end{aligned}$	Even No of Teeth	$\begin{aligned} & 2.0 \\ & 5.0 \\ & 6.5 \end{aligned}$	Odd No of Teeth	NOTES Horizontal measuring machine and reference setting standards.
External (Tip) Diameter	$\begin{array}{r} 10 \text { to } 100 \\ 100 \text { to } 200 \\ 200 \text { to } 300 \end{array}$					
Bore Diameter	$\begin{array}{r} 12 \text { to } 100 \\ 100 \text { to } 200 \\ 200 \text { to } 250 \end{array}$	$\begin{aligned} & 1.2 \\ & 3.8 \\ & 5.0 \end{aligned}$				
Profile total deviation (F_{α})	0.6 module to 3 module 3 module to 6 module	$\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$				CNC gear measuring machine.
Helix (lead) total deviation (F_{β}) /Helix Angle	$\begin{aligned} & 0 \text { to } 50 \text { Facewidth } \\ & 0^{\circ} \text { to } 15^{\circ} \\ & 15^{\circ} \text { to } 30^{\circ} \quad \text { Helix Angle } \\ & 30^{\circ} \text { to } 45^{\circ} \\ & 50 \text { to } 100 \text { Facewidth } \\ & 0^{\circ} \text { t } 15^{\circ} \\ & 15^{\circ} \text { o } 30^{\circ} \quad \text { Helix Angle } \\ & 30^{\circ} \text { to } 45^{\circ} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \\ & 2.5 \\ & 2.0 \\ & 2.5 \\ & 3.0 \end{aligned}$				
Cumulative pitch deviation (F_{p})	Min approx 1 module to 300 diameter	2.0				
Single pitch deviation (f_{p})	Min approx 1 module to 300 diameter	2.0				
Adjacent pitch difference (f_{u})	Min approx 1 module to 300 diameter	2.0				
Radial runout of tooth space deviation (F_{r}))	10 to 300	1.5				
Dimension over pins or rollers Spur gears (Mdr)	10 to 100 diameter 100 to 200 diameter 200 to 300 diameter	$\begin{aligned} & 5.0 \\ & 7.5 \\ & 10 \end{aligned}$				Horizontal measuring machine and reference setting standards.

Schedule of Accreditation issued by

United Kingdom Accreditation Service

Precision Technologies International Ltd t/a Precision Technologies

Issue No: 021 Issue date: 26 August 2021

Calibration performed at main address only

Appendix - Calibration and Measurement Capabilities

Introduction

The definitive statement of the accreditation status of a calibration laboratory is the Accreditation Certificate and the associated Schedule of Accreditation. This Schedule of Accreditation is a critical document, as it defines the measurement capabilities, ranges and boundaries of the calibration activities for which the organisation holds accreditation.

Calibration and Measurement Capabilities (CMCs)

The capabilities provided by accredited calibration laboratories are described by the Calibration and Measurement Capability (CMC), which expresses the lowest measurement uncertainty that can be achieved during a calibration. If a particular device under calibration itself contributes significantly to the uncertainty (for example, if it has limited resolution or exhibits significant nonrepeatability) then the uncertainty quoted on a calibration certificate will be increased to account for such factors.

The CMC is normally used to describe the uncertainty that appears in an accredited calibration laboratory's schedule of accreditation and is the uncertainty for which the laboratory has been accredited using the procedure that was the subject of assessment. The measurement uncertainty is calculated according to the procedures given in the GUM and is normally stated as an expanded uncertainty at a coverage probability of 95%, which usually requires the use of a coverage factor of $k=2$. An accredited laboratory is not permitted to quote an uncertainty that is smaller than the published measurement uncertainty in certificates issued under its accreditation.

Expression of CMCs - symbols and units

It should be noted that the percentage symbol (\%) represents the number 0.01. In cases where the measurement uncertainty is stated as a percentage, this is to be interpreted as meaning percentage of the measurand.
Thus, for example, a measurement uncertainty of 1.5% means $1.5 \times 0.01 \times q$, where q is the quantity value.
The notation $\mathrm{Q}[\mathrm{a}, \mathrm{b}]$ stands for the root-sum-square of the terms between brackets: $\mathrm{Q}[\mathrm{a}, \mathrm{b}]=\left[\mathrm{a}^{2}+\mathrm{b}^{2}\right]^{1 / 2}$

